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INTRODUCTION

Engineering codes are needed which can calculate convective heating rates accurately

and expeditiously on the surfaces of high-speed vehicles. One code which has proven to meet

these needs is the Langley Approximate Three-Dimensional Convective Heating (LATCH) code

(ref. 1). It uses the axisymmetvic analogue in an integral boundary-layer method to calculate

laminar and turbulent heating rates along inviscid surface streamlines. It requires the solution of

the inviscid flow field to provide the surface properties needed to calculate the streamlines and
streamline metrics. The LATCH code has been used with inviscid codes which calculated the

flow field on structured grids. Several more recent inviscid codes calculate flow field properties

on unstructured grids. The present research develops a method to calculate inviscid surface

streamlines, the streamline metrics, and heating rates using the properties calculated from

inviscid flow fields on unstructured grids. Mr. Chris Riley, prior to his departure from NASA

LaRC, developed a preliminary code in the C language, called "UNLATCH", to accomplish

these goals. No publication was made on his research. The present research extends and

improves on the code developed by Riley. Particular attention is devoted to the stagnation

region, and the method is intended for programming in the FORTRAN 90 language.

INVISCID SURFACE STREAMLINES AND METRICS

Let/_ be the position vector

£'=x}+y)+z£ (1)

The body surface is described by

F(x, y, z)= 0 (2)

Therefore, the Cartesian coordinates x, y, and z are not independent. We will consider y and z as

independent and that x can be determined from eq. (2) as some function of y and z. The method

developed here is similar to that in ref. 2 for the metric.

The unit normal to the body surface is given by

VF Fxt + Fy) + Fzt
_,, - - (3)

IVFI [Fx2 + F} + Fz2]I/2

The velocity is given by

(4)

On the body surface, _7 and _n are perpendicular. Therefore,

_7o et, = 0



and hence

uF x + vFy + wF z =O

(vFy + wF z )
or u = - (5)

We will also use streamline coordinates t and 13, where S = _Vdt is distance along a streamline

and 13is a coordinate constant along a streamline. The differential arc lengths are given by

and

where hi3

ds =Vdt

;;13d13

is the metric along a t = constant line. The unit vector in the direction of a streamline

is es, where

(6)

(7)

f = v_ s (8)

and the unit vector perpendicular to es and en is

'__L= es x _,, (9)

__1_is therefore tangent to the surface and normal to g's. If we consider t and 13as independent

variables for surface streamlines, then

0h f (_o)
Ot

and _/_
0--_ = hI3 _13 (1 I)

_?13is the unit vector tangent to a t = constant line on the surface and it is not

perpendicular to _s.

We set

_ = cos rl __t_+ sin 11 '_s

Let n be the straight line coordinate normal to the body. Thenwhere r I is to be determined.

(12)
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^

On en (13)

and /_ =/_(t, [3, n). Also R = x _ ÷ y ._ ÷ y/_ and the derivative of/_ gives

dR = d,:_ + dy) + dzk = Vdt_ s + hfsdfs_ _ + dn_ n (14)

We note that t, [3, and n are not orthogonal coordinates. Substitute eq. (12) for 'el3 in eq. (14) to

dxt + dy) + dS = Vclt_ s + hl3dl3(cos 11e_l. + sin "q es) + dn_,, (15)

Since y and z are functions of t, 13,and n, we can write

Oy Oy d_5 + Oy dn (16)
dy = -_ dt + 0_3 0,--;

OZ Oz d_ + OZ
and dz = -_t dt + ----_ _ dn (17)

where t, _, and n are independent coordinates and n = 0 on the body surface. Substitute eq. (16)

into eq. (15) and take the dot product of both sides of the resulting equation with ._. Equate the

coefficient of dl_ on both sides to get

Dy = h[3[co s _1e± o ._ + sin rl es ° ._] (18)

Similarily, substitute eq. (17) into eq. (15), take the dot product of both sides with /_, and equate

the coefficients of d[3 to get

0_z__z= hl3[co s 13e_l. °/_ + sin B es °/_] (19)

Since __1. = es × _n, then use eqs. (3) and (4) to perform the cross product. The result is

[?(vF z - wF v ) + )(wF x - uF z ) + I¢(uFy - vF x)]
2± = (20)

VIVFI

Using eq. (20) in eqs. (18) and (19) we get

get
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and

ay = hplcos q
a13 L

(wFx-uFz) +sin rlVl
VlVFI vj

=h_cosn ¢i _FT +si_n-

(21)

(22)

We can eliminate sin rl from eqs. (21) and (22) to get

[way_ az]
hl3cosrl:L 313 v_-_ [VFI

VF x

In obtaining eq. (23), u was found from eq. (5). The left side of eq. (23) is the metric

h = hi3 cos lq needed for the axisymmetric analogue to replace the axisymmetric body radius.

Note that hdl3 is the perpendicular distance between adjacent streamlines as shown in Fig. 1.

(23)

,8-- R_ = co_s'T^_T

Figure 1. Streamlines and metrics

We can also eliminate cos rl from eqs. (21) and (22) to get

az

Oy (w G uF¢)ap(vex- ,,F,,)_ + - --
(24)hp sin q

FxV
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and again u can be obtained from eq. (5). Equations (23) and (24) allow us to determine ri if

needed. Equation (23), however, is the relation needed to obtain the metric h = hi3 cos rl for the

axisymmetric analogue. An alternate method is given in the appendix which uses orthogonal
coordinates.

Stagnation Region

We will consider first the stagnation region for a body which is symmetric about the x-y

plane. The stagnation point is located at y = Y0 and z = 0. In the region near the stagnation

point we can approximate v and w by the relations.

v = Vy(y- YO)

and

where

Since

W = W z Z

Ov and w, =

Us=5-;o iN)o

03' v and Oz
Ot at

eqs. (25) and (26) can be written as

and

Oy

Ot Vy(y - YO)

bz

Ot w z z

(25)

(26)

(27)

(28)

Equations (27) and (28) can be integrated, holding 13constant, to give

Y - YO = C1 (_3)ev/ (29)

and

z = C 2 (13)e wzt (30)

where CI(I3 ) and C2(13 ) are functions of 13and thus constant along a streamline. The stagnation

point y = Y0 and z = 0 requires t = - oo since Vy > 0 and Wy > 0 in general. We have some

liberty in defining C 1(13) and C 2 (13) ; therefore, we set

Cz (13)= _ cos 13 (31)



Vy

and C 2 (13) = e_]-_- sin [3 (32)

where 8 is a small parameter with the dimension of length. The factor in eq. (32) is

inserted for convenience to make the curve t = 0 perpendicular to the streamlines which cross

that line. However, all the other lines of t = constant are not perpendicular to the streamlines.

Using eqs. (31) and (32) in (29) and (30) give

Y - YO = 8 cos 13e vyt (33)

v£and z = (34)8 -- sin i_ e w:t

Eliminating t from eqs. (33) and (34) gives another form of the streamline equation as

Y - Y0 = 8 cos [3

where, again, 13is constant along a streamline.

2
Y - YO +

8 e vyt

Vy .8,/-- s,n 13
VWz

If we eliminate 13from eqs. (33) and (34) we get

2

(35)

which is the equation for an ellipse for t = constant lines. Equations (35) and (36) show that

streamlines (13= constant) are perpendicular to t = constant lines only for t = 0, unless Vy = w z .

For eq. (23) we can use eqs. (25), (26), (33) and (34) to determine the factor

w--_-v = -w z sin 2 _3-Vy cos2 13 e(Vy+V:

= 1 (36)
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=-e- sin"13+ -- cos213 e (vy+wz)t

w z

Then eq. (23) becomes

(37)

sin 2 _+---=-- cos 2 13 e(Vy +wz)t
h = hi3 cos 11- (- Fx)o V w.

Note that Fx < 0 for the nose region of a blunt nosed body in order to make gn the unit outer

normal to the body. By using eq. (5) for u and eqs. (25), (26), (33) and (34) the magnitude of the

velocity becomes

V=_/u 2 +v 2 +w 2 =
(Fyv + Fzw)2F.2 + v 2 + w2 ] 1/

1

IF_I
--- [_ +,7_2+<_ +_-_ +2_y_UWl'_

F

= I Vy e 2vyt (F_ + F2)O sin2_Je 2wzt_Vy,/_ _'_x_+,7_0-cos__ +

+wz)t]l/2
+ 2(FyFz) 0 sin_cosf3e (vy (39)

For bodies symmetric about the x-y plane, F z = 0 in the plane of symmetry.

For the laminar heating rate, we use dS = Vdt to determine the integral

t

I - ih2Vds = fh2V2dt

0 --oo

(40)

Using eq. (38), eq. (40) can be integreted to yield

1- [VFI_ _4VvW.lsin2

(Fx)2 " ,_L 2 e2(Vy+W.)t

Vy
+ -- cos 2

w z 2(Vy + w z)
(41)

For the laminar momentum thickness, we need the ratio 11/2/hV which becomes
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hV _/2(Vy + w.. )

(42)

Note that this result is independent of 13, t, and E in the stagnation region.

Region Beyond the Stagnation Region

It is convenient to let t = 0 at the edge of the stagnation region. Then - _ < t < 0 for the

stagnation region, where the equations given above are valid.

For t > 0, we can determine the metric h = hi3 cos rl from eq. (23) provided we can

by bz

calculatae -_- and -ff_-. On the body surface y and z are independent variables and also t and [3

are independent variables. The velocity components are given at specific positions x, y and z
from the inviscid solver. We note that

and

3v
v_ = v (43)
Ot

_2 y 3v

al3at 013
(44)

But v = v(y, z) and _)2y _ c32y

In a similar manner

a6at ata_
• Therefore eq. (44) can be written as

a ¢aZl=(Ow I _y ¢Ow)OZ

Oy Oz

Starting at the ege of the stagnation region, where t = 0 and _ and _ are known, we can

03, az
-- = W

determine y, z, -_- and -_- along a streamline by integrating eqs. (43), (45), (46) and Oz3t

numerically with t or S = SVdt as the independent variable. In order to do that, we must be able

(45)

(46)
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to interpolate the inviscid solution on the surface to determine v, w,

equations given above.

3v Ov Ow and O.__wwfor the

3y' 3z' Oy 3z

Surface Fitting Geometry

Consider the inviscid solution on an unstructured grid. For the body surface, we would
know

xi, ui, Yi, vi, Zi, and w i

at points on the surface for Cartesian coordinates (x, y, z) with corresponding inviscid velocity

components (u, v, w). The points do not, in general, correspond to any regular pattern on the

surface. The equation for the body surface is generally not known, but can be represented by eq.

(2). Then the unit normal, g'n, to the surface, although not known, could be determined from eq.

^^^ 3F

(3) where (i, j, k) are unit vectors in the (x, y, z) directions, respectively. Also, F x 3x

_)F 3F

Fy = --_--y,and F z = --_-z" As shown earlier, I7o ,_,, = 0 implies

"G + vFy + wFz = 0 (5)

We will consider 3 adjacent points on the body surface as shown in Fig. 2.

.3

Figure 2. Adjacent points on body surface
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We wishto surfacefit theconicequation

"_ 2 a4x2F(x, y, z) = y- + alY + a2z + a3z + + a5x + a 6 =0 (47)

to the region inside the triangle formed by the 3 points. The coefficient of y2 is chosen to be

unity, which means this term cannot be zero. We could have chosen some other term to have

unity as its coefficient, as long as we know that term is not zero. With x the coordinate in the

longitudinal direction, then the y2 term would not be zero except for some flat surfaces.

For the surface fit to the triangular region, we need to determine the coefficients a 1, a 2 ,

a 3, a 4, a 5 , and a 6 . Therefore we need 6 equations. These equations follow by applying

equtions (5) and (47) to the points 1, 2, and 3 on the surface. From eq. (47) we get

F x = 2a4x + a 5

Fy =2y+a 1

F z = 2a 2z + a 3

(48)

then eq. (5) becomes

u(2a4x + a5) + v(2y + al) + w(2a2z + a3) = 0 (49)

Rearranging, we get

alv + a2(2wz ) + a3w + a4(2ux ) + a5u =- 2vy (50)

Now apply eqs. (47) and (50) at the 3 points on the surface. This gives 6 equations for the 6

unknowns a I ..... a 6 . After determining these 6 coefficients, we can calculate the surface

normal, en' from eq. (3) and x as a function ofy and z from eq. (47). However, there is no

guarantee that the surface equation is continuous with adjacent triangles to the 3 points. Note

that F(x, y, z) = 0 being the body surface, there are only two independent variables. It is

convenient to use y and z as these two indepdendent variables since the streamines near a blunt

nose (x = 0, y = 0, z = 0) has the distance along the streamline varying as y and z but X 1/2 forx-

direction. This can be seen more clearly when looking at the stagnation region. As an example,

consider a blunt-nosed body described by the simplier conic shape

y2 + Kz 2 = 2ax + Bx 2 (51)

where the cross section for x = constant is an ellipse and K, a, and B are constants. K determines

the ellipticity for the cross sectional shape, "a" is the nose radius of curvture in the (y - x) plane,
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(a/K) is thenoseradiusof curvaturein the(z - x) plane, and B determines the conic section in the

x-direction, i.e.,

B < 0 for elliptic, B = 0 for parabolic and B > 0 for hyperbolic longitudinal shapes.

Here we write eq. (51) as

F(x, y, z) = y2 + kz 2 _ 2ax - Bx 2 = 0 (52)

We can solve for x from the quadratic formula, with B _ 0, using x = 0 at y = 0 and z = 0, to

determine the proper sign. Thus eq. (52) becomes

- a + [a 2 + B(y 2 + Kz2)] t/2
x = (53)

B

which also can be written as

a + Bx=[a 2 + B(y 2 + kz2)] 1/2

Equation (54) is convenient because eq. (52) gives

(54)

OF 2a 2Bx 2(a + Bx) 2[a 2 + B(y 2 + kz2)] 1/2 (55)
Vx= Ox

OF
Also Fy ---- = 2y and F z = 2kz (56)0y

For zero angle of attack, the nose point is the stagnation point, and for the region near the

stagnation point

v _- Vy y and w _ w z z (57)

where Vy = and w z =
0 0

1
(vFy + WFz )

u is determined from eq. (5) as

and using eqs. (55), (56), and (57) we get
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andnearthestagnationpoint,

[Vyy2 + wzKZ 2]
, -- (58)

[a 2 + B(y 2 + Kz2)] t/2

Vyy 2 + wzKz 2
u _ (59)

a

Thus u ~ y2 and Z2 whereas v ~ y and w - z. Therefore, we will use y and z as independent

variables on the surface and x can be determined from F(x, y, z) = 0. Also, we will work with v

and w since u can be determined from eq. (5).

Surface Fitting Velocity Components

If we only use the 3 points on the triangle 1, 2, 3, then the velocity components v and w

can only be fit as linear variations in y an z, i.e.,

v = b ly + b2z + b 3 l

Jw = c 1y + c 2 z + c3

(60)

where the constants can be determined by applying the equations above for v and w to the 3

points where v and w are known. If we wish more than linear variations in y and z, then we must

consider more than 3 points.

One possibility is to add 3 adjacent points as shown in Fig. 3.

--_ 3

I '''q "_ "_ ..,,_

I\ --
\ ,/

\ ,/
-.g,

4

Figure 3. Adding three adjacent points
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With 6 points,wecouldwrite v and w as

v=b ly+b 2z +b 3 +b 4y2 +b5z2 +b6yz

"9 '3

w = c Iy + c 2 Z + c 3 + c 4 y- + c5 z" + c 6 yz (61)

The 6 coefficients for v and for w could be determined by applying the equations above to the 6

points where y, z, v, and w are known. Although 6 points are used to determine the coefficients,

the equations above are applied only to the region inside the triangle formed by points 1, 2, and
3.

If we go outside the triangle 1, 2, 3 then other points would be used for that region. For

example, suppose we go beyond (1, 2, 3) into the triangle (2, 5, 3). Then we would add 2 points

(7 and 8) to the points (1, 2, 3, 5) to make 6 points to determine the coefficients for the region (2,

5, 3). See Fig. 4.

4-

7

Figure 4. Adjacent triangle (2, 5, 3)

What is the continuity of the v and w along the common boundary line 2-3? Along the line 2-3,
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Y-Y2 _ Z-Z2

Y3 - Y2 Z3 - Z2
(62)

Thus
v2_ 3 = bl[Y 2 +

(Y3 - Y2)

(z3 - z2) (z - z2 )l + b2z + b3 + b4[Y 2

(Y3 - Y2 )(z - z2 )12_
+ J

+ b5 z2 + b6z[Y2

/

+ { Y3 - Y2
bz3 - z2 (Z - Z2) ]

(63)

Let v2_ 3 = BI z2 + B2z + B 3 for Z 2 < Z < z 3 (64)

The coefficients B 1, B 2, and B 3 must be the same for triangle (1, 2, 3) as those for triangle (2,

5, 3). These conditions would replace pt. 1 for (2, 5, 3). Note that the v2_ 3 equation above

already satisfies v = v 2 and v = v3 . Thus the relation given by eq. (63) or (64) along with v at

points 5, 7, and 8 allow us to determine the 6 coefficients in eq. (61). Similarily for the w

component of velocity.

CONCLUDING REMARKS

The method developed in this report can be used to calculate the heating rates on high

speed vehicles. The improved solution for the stagnation region should provide more accurte

heating rates and the technique can be used for regions downstream on unstructured as well as

structured grids.
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APPENDIX

AlternateSurfaceCoordinates

Theuseof t and 13as independent coordinates on the body surface did not allow t =

constant lines to be perpendicular to surface streamlines, along which [3 = constant. An alternate

method is to use 0 and 13as independent coordinates where

dS = Vdt = hsdO (A-l)

and 0 = constant lines are perpendicular to the surface streamlines, where _ is still constant along

a streamline. The metric associated with dO is h s and it is generaly not needed to calculate

heating rates. The coordinate 0 is defined such that the unit vector in the 13direction is __1_.

Thus eq. (14) becomes

dl{ = dxt + dy) + dz£: = hsdOO s + hd13 _£ + dn_ n (A-2)

Now we are dealing with orthogonal coordinates 0, 13, and n, and the metric needed for the

axisymmetric analogue is h. Considering y and z as functions of 0, [3, and n then eq. (A-2) dotted

with 3 gives

Oy h(wF x - uF z)

-_ = he_l_ O ) = V IVF [
(A-3)

where eq. (20) was used for g'_l_• Dotting Eq. (A-2) with £ gives

OZ h(uFy - vF x)

= hg± oi= VlVF[
(A-4)

Note that -_- is now a partial derivative holding 0 and n constant, whereas the -_ in eqs. (21)
4

and (22) held t and n constant. Multiply eq. (A-3) by w and subtract eq. (A-4) multiplied by v to

get

-u IVF[
w

h = (A-5)
VF x

0

Eq. (A-5) is similar to eq. (23) except here -_ holds 0 and n constant.

Consider the stagnation region again, but using 0, 13, and n as independent variables. 0 is

related to t by eq. (A-I) and t must be considered a function of 0 and 13on the surface. Eqs. (33),



17

(34),(35), and(36),arevalid herealso.

and(34),weget

a az
However,whendetermining_ and I-5o)-.-7from eqs.(33)

(A-6)

and E  ]ot=_. - cos [3+wzsin13
o

(A-7)

Interestingly, when we form w 0)---_-- v the terms involving -_- cancel and eqs. (37) and

(38) are also valid here. Although t is not an independent variable, we can still use it and eqs.

(41) and (42) are also valid.

For the region beyond the stagnation region, we could use eq. (A-5) to determine h if we

by _gz from adjacent streamlines. On the other hand, if we are tracing only
can determine _- and ----_

one streamline, then we must integrate the differential equation derived below to determine h. It

follows from eq. (A-2) that

ok
O--O= hs _s (A-8)

ak
and --_ = h_t (A-9)

We note that the equality of cross derivatives gives

O2,_ a2k

0130o 0o0[3
(A-IO)

Differentiate eq. (A-8) with respect to 13and eq. (A-9) with respect to 0 and then substitute into

eq. (A-10) to get

hs O_s Ohs O_.j_ Oh+ -- es = h -- + _±
a_ a_ oo -_

(A-11)

Take the dot product ofeq. (A-11) with g..t. and divide both sides by hsh to get
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1 Oh 1 O_s ^

The partial derivative on the fight side can be evaluted by using the transformation

h alS t,@ ./_.,,hals ka,.,./y.,,halS

Eqs. (A-3) and (A-4) give relations to determine 1 0y and 1 0z

h al3 h O_'
integrated along a streamline using

Then eq. (A-12) can be

dS = hs dO

(A-12)

(A-13)

as the variable of integration or with dt - hs dO
V

If we dot eq. (A-11) with g's we get

as the variable of integration.

(A-14)

Divide both sides by hsh and use the vector relationship 0_-L o es = - g'..L O_s
a--O- o O-ff to write eq.

(A-14) as

1 Oh__.!s= 1 o_g_s ,,

h--s--h 013 - hT 0-'-0 ° e_l_

The partial derivative on the right side can be transformed using

h s O0 k Oy z.n hs O0 k OZ )y,n hs OO

and from eq (A-2) we obtain

(A-15)

(A-16)

1 Oy =_s ° }=v
h s O0 V

(A-17)
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and
i O:

-_,o£ w
h s O0 V

(A-18)

Eq. (A-15) gives the curvature term

1 1 Ohs

hs h 3p

which is needed when solving the cross-flow boundary layer equation.

however, the cross-flow boundary layer equation is not needed.

For heating rates,


